

O

KILLE

Capabilites

For routine measurements of thin film thickness and refractive index, the alpha-SE^(m) is a great solution. Designed for ease-of-use: simply place the sample on the stage, choose the model that matches your film, and press measure. You have results within seconds.

Why an alpha-SE?

Easy-to-Use

Simple push-button operation with advanced software with built in models that does the work for you.

Powerful

Proven spectroscopic ellipsometer technology gives you both thickness and index with much higher certainty than other techniques.

Flexible

Measure any kind of material - dielectrics, semiconductors, organics, and more.

Affordable

The power of spectroscopic ellipsometry at a reasonable price.

Fast

Hundreds of wavelengths simultaneously collected in seconds - immediate results.

Applications

For Transparent Films

With fast measurement speed and push-button operation, the alpha-SE[®] is ideal for qualifying thin films. Single-layer dielectrics on silicon or glass substrates can be measured in seconds. Log results for easy-to-use comparisons in both graphical and tabular formats.

Compariso	n 🧮			X					
Entry Co	mparison Ta	able							
	MSE	Roughness (nm)	Thickness # 1 (nm)	Index @ 632.8 nm					
SiNx #1	4.343	2.65	93.19	1.799					
SiNx #10	4.432	1.59	93.02	1.905					
SiNx #2	4.356	2.05	96.33	1.779					
SiNx#3	6.244	1.47	91.84	1.799					
SiNx #4	5.872	1.02	94.20	1.775					
SiNx #5	3.122	3.29	101.37	1.745					
SINx #6	5.845	1.29	92.71	1.802					
SiNx #7	4.975	2.16	96.72	1.867					
SiNx #8	3.581	2.90	87.54	1.942					
SiNx #9	3.804	2.34	88.37	1.941					
Average	4.65733	2.077	93.529	1.83540					
Std. Dev.	1.05345	0.737	4.033	0.07233					
4									
Reverse Columns/Rows Add Statistics Copy To Clipboard									
Compare Optical Constants									

A series of silicon nitride thin films is quickly compared to study variation in the thickness and refractive index with process conditions.

Self-Assembled Monolayers

Phase information of a spectroscopic ellipsometry measurement is highly sensitive to very thin films (<10 nm). For example, self-assembled monolayers can be measured and quickly compared using the alpha-SE.

For thin organic layers on gold, the phase parameter (Δ) shifts downward with increasing thickness.

For Absorbing Films

Advanced models allow quick and efficient fits for a wide variety of absorbing materials you may encounter.

Materials

- a-Si
- poly-Si
- Diamond-like carbon
- Organic materials
- Organic LED films
- SiC
- Photoresist
- Display color filters
- Metals

- Gaussian
- Drude
- Tauc-Lorentz
- Cody-Lorentz
- Bspline

🔾 n & k

View/Fit A

Open Material Fi

Mat: Gen-Osc

🖲 e1 & e2

🖲 nm

⊖ eV

<u>Fit</u> <u>R</u>eset

0.044

Coatings on Glass

Patented technology allows accurate measurements on any substrate: metal, semiconductor, or glass. For transparent substrates, the alpha-SE[®] simultaneously measures depolarization to correct for light returning from the backside of the substrate. This unwanted light can confuse other ellipsometers, but the alpha-SE ensures accurate thickness and optical constants.

Analysis Results					×
Parameter	Ideal	Roughness	Grading	Roughness & Grading	
MSE	33.598	1.175	2.100	0.780	
Roughness	N⁄∕A	11.17 ± 0.040 nm	N⁄∕A	8.64 ± 0.173 nm	
A	1.752 ± 0.0248	1.873 ± 0.00082480	1.840 ± 0.0014	1.866 ± 0.00074629	
В	0.08507 ± 0.015419	0.00934 ± 0.00048968	0.02420 ± 0.00086051	0.01388 ± 0.00042965	
С	-0.00632 ± 0.002129	0.00104 ± 6.5930E-05	-0.00285 ± 0.00011423	-2.3533E-05 ± 8.1498E-05	
% Inhomogeneity	N/A	N/A	-17.30 ± 0.161	-4.41 ± 0.292	
Thickness # 1	91.26 ± 0.473 nm	88.81 ± 0.025 nm	83.07 ± 0.075 nm	86.89 ± 0.118 nm	
n of Cauchy Film @ 632.8 nm	1.925	1.903	1.882	1.901	•
	Copy Table to Clipboar	d Copy All To HTML	Clipboard Close		

The high sensitivity of alpha-SE technology provides microstructural details that you cannot get from Reflectance measurements. A thin film of Zirconium Oxide is measured with the alpha-SE and its index is found to vary between the substrate and surface. A graded model with rough surface best describes this sample.

Easy Measurements

Measurements as easy as 1-2-3, with results in a matter of seconds!

CompleteEASE						
Measurement In situ Analysis Hardware Options						
System Status Waiting to Acquire Data						
Measurement Controls Mode: Standard ▼ Sample Alignment: Robust ▼ 1 Angles: ≥ 65° ≥ 70° ≥ 90°(S-T)						
Mode <u>I</u> : ITO (thin) on Glass						
☑ Save Data after Measurement ② Measure						

- 1. Mount your sample and choose your measurement settings:
 - Angles
 - Sample alignment
 - Model that describes your sample

- 2. Press 'Measure'
 - Sample is automatically aligned, measured and the data is analyzed

3. Your results are reported: film thickness, refractive index,

Thickness and Refractive Index

Spectroscopic ellipsometry is perfect for characterizing thin film thickness and refractive index. The alpha-SE measures films from just a monolayer to a few microns.

Dynamic measurements of a native oxide on silicon show very stable, sub-Angstrom precision.

This 5-micron thick oxide has a large number of interference features that are well-resolved by 180 wavelengths measured by the alpha-SE.

An organic layer on silicon is easily characterized by the alpha-SE to determine thickness and refractive index. Simulated values with (a) varied thickness and (b) varied index show the distinct changes that give ellipsometry unique results for both film properties.

Accessories

Focusing

...

Perfect for non-uniform or small samples.

- Reduce beam diameter to ~0.3mm
- Quick and easy magnetic attachment- optics snap into position
- No alignment or calibration required

Camera

View the focused beam measurement location.

- 10mm by 7mm field of view
- Integrated image within CompletEASE software

Translation

Fine-adjustment of the measurement location.

- Manually adjust 12mm XY range with .025mm resolution
- Integrated vacuum stage holds sample in place
- Position the focused beam spot anywhere on the sample

Liquid Cell

- Study samples in liquid ambients
- 500µL liquid capacity
- 70° angle of incidence
- Designed for glass slides & 1" or 2" wafers

Software accounts for window effects and index of ambient fluid.

QCM Cell

- Allows study of mechanical properties in liquid ambients
- Tilt stage designed to hold Q-Sense QCM-D (E-Series with E1 Chamber)
- Woollam provides mount only

Transmission Stage

- Holds sample vertically in the path of light beam to allow normal incidence transmission measurements
- Tip-tilt stage for easy sample alignment
- Integrated vacuum stage holds sample in place

Specifications

Spectral Range 380 nm to 900 nm, 180 wavelengths

System Overview

Patented rotating compensator technology with CCD detection

Weight 18 kilograms excluding computer Angle of Incidence 65°, 70°, 75° or 90° (straight-through)

Data Acquisition Rate

3 sec. (Fast mode)10 sec. (Standard mode)30 sec. (High-precision mode)

Beam Diameter

Collimated: ~3 mm Focused: ~0.3 mm

